作者:Mason Nystrom 编译:深潮TechFlow 机器人正在成为加密经济的核心参与者。 这一趋势的证据随处可见。例如,搜索者会部署机器人(如 Jaredfromsubway.eth)来利用人类用户对便利性的需求,通过抢先交易获利于他们的去中心化交易所 (DEX) 交易。而像 Banana Gun 和 Maestro 这样的工具,则允许用户通过 Telegram 平台便捷地进行由机器人支持的交易,这些工具长期占据以太坊上“gas 消耗”榜单的前列。此外,在像 Friendtech 这样的新兴社交应用中,机器人在初期获得人类用户的采用后也迅速介入,并可能无意间加速了市场的投机循环。 总的来说,无论是以盈利为目的(如 MEV 机器人,MEV 即“最大可提取价值”)还是面向普通用户(如 Telegram 机器人工具包),机器人正在逐渐成为区块链上的优先用户。 尽管目前加密领域的机器人功能还相对简单,但随着大语言模型 (LLMs) 的发展,加密领域之外的机器人已经演变为功能强大的 AI 智能体 (AI agents),其目标是能够自主处理复杂任务并做出明智决策。 在加密原生环境中构建这些 AI 智能体具有以下几项重要优势:
当然,链上 AI 智能体也面临一些局限性。 一个主要限制是,AI 智能体需要在链下执行逻辑以提升性能。这意味着智能体的逻辑和计算会托管在链下,但决策仍然在线上执行,从而确保操作的可验证性。此外,AI 智能体还可以使用像 Modulus 这样的 zkML(零知识机器学习)提供商来验证其链下数据输入的真实性。 另一个关键局限性是,AI 智能体的功能依赖于其工具的丰富程度。例如,如果你希望智能体总结一条实时新闻,它需要具备网络爬虫工具来搜索互联网。如果你希望它将结果保存为 PDF,则需要为其配备文件系统。如果你想让它模仿你最喜欢的 Crypto Twitter 意见领袖的交易,则需要为其提供钱包访问权限和密钥签名功能。 从确定性到非确定性的角度来看,目前大多数加密 AI 智能体执行的任务都属于确定性任务。这意味着人类已经预先设定了任务的参数及其执行方式(例如 Token 交换的具体流程)。 加密 AI 智能体从早期的守护机器人(keeper bots)发展而来,这些机器人至今仍被广泛应用于 DeFi 和预言机服务中。而如今,AI 智能体已经进化得更加复杂。它们不仅能够利用大语言模型 (LLMs) 实现自主创作(如 Botto 这类自主艺术家),还能通过 Syndicate 的交易云为自己提供金融服务。此外,像 Autonolas 这样的早期 AI 智能体服务市场也正在逐步形成。 目前,许多前沿应用正在展示 AI 智能体的潜力:
随着越来越多的应用和协议开始引入 AI 智能体,人类将通过它们作为进入加密经济的桥梁。虽然今天的 AI 智能体看起来还像是“玩具”,但未来它们将全面提升用户的日常体验,成为区块链协议中的关键利益相关者,甚至在智能体之间形成完整的经济生态系统。 AI 智能体目前仍处于发展初期,但作为链上经济的核心参与者,它们才刚刚开始展现自己的潜力。 |